Home
Class 12
MATHS
tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=tan^...

`tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=tan^(-1)((1)/(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan^(-1)((1)/(3))+tan^(-1)((2)/(9))+tan^(-1)((4)/(33))+tan^(-1)((8)/(129))+...n terms is:

A vertical pole subtends an angle tan^(-1)((1)/(2)) at apoint P on the ground.The angle subtended by the upper half of the pole at the point P is (A)tan^(-1)((1)/(4))(B)tan^(-1)((2)/(9))(C)tan^(-1)((1)/(8))(D)tan^(-1)((2)/(3))

Find the sum of the series tan^(-1)((1)/(2))+tan^(-1)((1)/(2))+tan^(-1)((1)/(18))+tan^(-1)((1)/(32))+

prove that tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(-1)((2)/(9))

Prove that tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(-1)((2)/(9))

2tan^(-1)((1)/(5))+tan^(-1)((1)/(8))= tan^(-1)((4)/(7))

Prove that : tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)

"tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(3^(3))) + ....oo is equal to

tan^(-1)((4)/(7))+tan^(-1)((1)/(7)) = tan^(-1)((7)/(9))

Show that ,,tan^(-1)(1)/(2)+tan^(-1)(2)/(11)=tan^(-1)(3)/(4)