Home
Class 12
MATHS
The range of f(x)=[1+sinx]+[2+sin(x/2)]+...

The range of `f(x)=[1+sinx]+[2+sin(x/2)]+[3+sin (x/3)]+....+[n+sin (x/n)]AAx in [0,pi]` , where [.] denotes the greatest integer function, is,

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

The range of f(x)=[sin{x}], where [x] denotes greatest integer function

Range of f(x)=[1+sin x]+[cos x-1]+[tan^(-1)x]AA x in[0,2 pi] where [1 denotes the greatest integer function is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.