Home
Class 12
MATHS
Let [x] represent the greatest integer l...

Let [x] represent the greatest integer less than or equal to `x` If [`sqrt(n^2+lambda)]=[sqrt(n^2+1)]+2` , where `lambda,n in N ,` then `lambda` can assume (a) `2n+4` different values (b)` 2n+5` different values (c)`2n+3` different values (d)`2n+6` different values

Promotional Banner

Similar Questions

Explore conceptually related problems

If [x] be the greatest integer less than or equal to x then sum_(n=8)^(100) [ ((-1)^n n)/(2)] is equal to :

If (sqrt(2n^(2)+n)-lambda sqrt(2n^(2)-n))=(1)/(sqrt(2))( where lambda is real number),then

If A=[(1,1), (1,1)] and det (A^n-1)=1-lambda^n, n in NN, then the value of lambda_n is

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

If A = [[1 ,1],[1,1]] and det (A^(n) - 1) = 1 -lambda ^(n), n in N, then the value of lambda is

The value of lim_(n rarr oo)[3sqrt((n+1)^(2))-3sqrt((n-1)^(2))] is

Let n in N and [x] denote the greatest integer less than or equal to x. If the sum of (n + 1) terms ""^(n) C_(0) , 3 .""^(n)C_(1) , 5. :""^(n) C_(2) , & .""^(n)C_(3) is equal to 2 ^(100) . 101 then 2 [(n-1)/(2)] is equal to _________