Home
Class 12
MATHS
The period of the function f(x)=c^sin^2x...

The period of the function `f(x)=c^sin^2x+sin^(2(x+pi/3)+cosxcos(x+pi/3))` is (where `c` is constant) 1 (b) `pi/2` (c) `pi` (d) cannot be determined

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of the function f(x)=sin((2x+3)/(6pi)) , is

Find the period of the function f(x) = sin((pi x)/3) + cos ((pi x)/2) .

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

The period of the function f(x)=4sin^(4)((4x-3 pi)/(6 pi^(2)))+2cos((4x-3 pi)/(3 pi^(2)))

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

Show that the function f(x)=sin(2x+pi/4) is decreasing on (3 pi/8,5 pi/8)

The period of the function |sin^(3)(x)/(2)|+|cos^(5)(x)/(5)| is 2 pi(b)10 pi(c)8 pi(d)5 pi

The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {x} denotes the fractional part of x) is

The period of the function f(x)=(6x+7)+cos pi x-6x, where [.] denotes the greatest integer function is: 3 (b) 2 pi(c)2(d) none of these