Home
Class 12
MATHS
The domain of f(x)=sqrt(2{x}^2-3{x}+1), ...

The domain of `f(x)=sqrt(2{x}^2-3{x}+1),` where {.} denotes the fractional part in `[-1,1]` is (a) `[-1,1]-(1/(2,1))` (b)`[-1,-1/2]uu[(0,1)/2]uu{1}` (c)`[-1,1/2]` (d) `[-1/2,1]`

A

`[-1,1] ~((1)/(2),1)`

B

`[-1,-(1)/(2)] cup [0,(1)/(2)] cup {1}`

C

`[-1,(1)/(2)]`

D

`[-(1)/(2),1]`

Text Solution

AI Generated Solution

To find the domain of the function \( f(x) = \sqrt{2\{x\}^2 - 3\{x\} + 1} \), where \(\{x\}\) denotes the fractional part of \(x\), we need to ensure that the expression under the square root is non-negative. ### Step-by-Step Solution: 1. **Understanding the Fractional Part**: The fractional part \(\{x\}\) is defined as: \[ \{x\} = x - \lfloor x \rfloor ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of f(x)=sqrt(2{x}^(2)-3{x}+1 (where {} denotes the fraction part),in [-1,1] is,

The domain of f(x)=(1)/(sqrt(-x^(2)+{x})) (where {.} denotes fractional part of x) is

Domain of f(x)=(1)/(sqrt({x+1}-x^(2)+2x)) where {} denotes fractional part of x.

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

The range of f(x)=({x}^(2)-{x}+1)/({x}^(2)+{x}+1) (where {f} denotes fractional function) is

int_(0)^(x)({x}-(1)/(2))dx=(1)/(2){x}^(2)-(1)/(2){x}, where denotes the fractional part of x.

The domain of the function f(x)=(sqrt(x^(12)-x^(3)+x^(4)-x+1))/(2sqrt(2{x}^(2)-3{x}+1)) (where {} denotes the fractional part functio) is

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

let f(x)=(cos^(-1)(1-{x})sin^(-1)(1-{x}))/(sqrt(2{x}(1-{x}))) where {x} denotes the fractional part of x then

If f'(x)=|x|-{x}, where {x} denotes the fractional part of x, then f(x) is decreasing in (-(1)/(2),0)(b)(-(1)/(2),2)(-(1)/(2),2)(d)((1)/(2),oo)