Home
Class 11
MATHS
In any triangle. if(a^2-b^2)/(a^2+b^2)=(...

In any triangle. `if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B))` , then prove that the triangle is either right angled or isosceles.

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle.i(a^(2)-b^(2))/(a^(2)+b^(2))=(sin(A-B))/(sin(A+B)), then prove that the triangle is either right angled or isosceles.

in triangleABC if (a^2+b^2)/(a^2-b^2)=sin(A+B)/sin(A-B) then prove that it is either a right angled or an isosceles triangle.

If in a hat harr ABC,(a^(2)-b^(2))/(a^(2)+b^(2))=(sin(A-B))/(sin(A+B)), prove that it is either a right angled or an isosceles triangle.

In DeltaABC, (a^(2)+b^(2))/(a^(2)-b^(2))=(sin(A+B))/(sin(A-B)) , prove that the triangle is isosceles or right triangle.

If cos B=(sin A)/(2sin C) then prove that the triangle is isosceles.

In a triangle ABC, if (a^(2)+ b^(2))sin(A-B) = (a^(2)-b^(2))sin(A+B) (where a ne b ), prove that the triangle is right angled.

If in triangle ABC , (a^2+b^2)sin(A-B)=(a^2-b^2)sin(A+B) ,show that the triangle is either'isosceles or right angled.

In /_\ABC if sin2A+sin2B = sin2C then prove that the triangle is a right angled triangle

In any triangle ABC, if (cosB+ 2 cosA)/(cos B + 2cosC ) = (sin C)/(sinA) then prove that, the triangle is either isosceles or right angled.