Home
Class 11
MATHS
int(dy)/(dx)+(4x)/(x^(2)+1)y=(1)/((x^(2)...

int(dy)/(dx)+(4x)/(x^(2)+1)y=(1)/((x^(2)+1)^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the differential equation: (dy)/(dx)+(4x)/(x^2+1)y=1/((x^2+1)^3)

The solution of (dy)/(dx) + (3x^(2) y)/(1 + x^(3)) = (1+ x^(2))/(1 + x^(3)) is

(dy)/(dx) = (4x + 3y -1)^(2)

(dy)/(dx)=(x+y+1)/(2x+2y+3)

(dy)/(dx)=(x+y+1)/(2x+2y+3)

(dy)/(dx)-2/(x+1) y=(x+1)^3

The solution of differential equation x^(2)=1+((x)/(y))^(-1)(dy)/(dx)+(((x)/(y))^(-2)((dy)/(dx))^(2))/(2!)+(((x)/(y))^(-3)((dy)/(dx))^(3))/(3!)

If y = tan ^ (- 1) ((3x) / (1-2x ^ (2))), - (1) / (sqrt (2))