Home
Class 11
MATHS
If y=sinx+e^x ,t h e n(d^2x)/(dy^2)= ...

If `y=sinx+e^x ,t h e n(d^2x)/(dy^2)=` (a)`(-sinx+e^x)^(-1)` (b)`(sinx-e^x)/((cosx+e^x)^2)` (c) `(sinx-e^x)/((cosx+e^x)^3)` (d) `(sinx+e^x)/((cosx+e^x)^3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=sinx+e^(x) then (d^(2)x)/(dy^(2)) is:

y=sinx+e^(x) then (d^(2)x)/(dy^(2)) is:

If y=sinx+e^(x)," then "(d^(2)x)/(dy^(2)) equals

If y=sinx+e^(x) , then the value of (d^(2)x)/(dy^(2)) is -

y = sinx.e^x . Find dy/dx

e^(sinx)sin(e^(x))

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

If y=e^(-x)cosx, show that (d^(2)y)/(dx^(2))=2e^(-x)sinx.