Home
Class 14
MATHS
ln log(1+tan x)dx=(pi)/(8)log(2)^(2)...

ln log(1+tan x)dx=(pi)/(8)log_(2)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^((pi)/(4))log(1+tanx)dx=(pi)/(8)log2

Prove that int_(0)^(pi/4)log(1+tanx)dx=(pi)/(8) log2.

Prove that, int_(0)^(pi)log(1+cos x)dx=-pi log2 , given int_(0)^((pi)/(2))log((sin x))dx=(pi)/(2)"log"(1)/(2) .

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

Prove that int log sin x dx = - (pi/2)log2

Prove that int_(0)^( pi/8)log|1+tan2x|backslash dx=(pi)/(16)log_(e)2