Home
Class 12
MATHS
sec^(2)10^(@)-cot^(2)80'=?...

sec^(2)10^(@)-cot^(2)80'=?

Promotional Banner

Similar Questions

Explore conceptually related problems

Without using trigonometric tables , prove that : (i) tan20^(@)tan40^(@) tan45^(@)tan50^(@)tan70^(@)=1 (ii) tan1^(@) tan2^(@)tan60^(@)tan88^(@)tan89^(@)=sqrt(3) (iii) cot5^(@)cot10^(@)cot30^(@)cot80^(@)cot85^(@)=sqrt(3) (iv) 4sin10^(@)sin20^(@)sin30^(@)sec70^(@)sec80^(@)=2

Without using trigonometric tables , prove that : (i) tan20^(@)tan40^(@) tan45^(@)tan50^(@)tan70^(@)=1 (ii) tan1^(@) tan2^(@)tan60^(@)tan88^(@)tan89^(@)=sqrt(3) (iii) cot5^(@)cot10^(@)cot30^(@)cot80^(@)cot85^(@)=sqrt(3) (iv) 4sin10^(@)sin20^(@)sin30^(@)sec70^(@)sec80^(@)=2

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

cos ec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cos ec^(2)A-1)

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

The expression S=sec11^(@)sec19^(@)-2cot71^(@) reduces to

sec^(2)(tan^(-1)(2))+cosec^(2)(cot^(-1)(2))=

sec^(2) ( tan^(-1)2) + cosec^(2) ( cot^(-1)3) =

sec ^(2)(tan ^(-1) 2)+cosec^(2)(cot ^(-1) 3)=

sec ^(2)(tan ^(-1) 2)+cosec^(2)(cot ^(-1) 3)=