Home
Class 10
MATHS
" 25."y=(e^(ax)sec x log x)/(sqrt(1-2x))...

" 25."y=(e^(ax)sec x log x)/(sqrt(1-2x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if,y=(e^(ax)sec x log x)/(sqrt(1-2x))

If x^y = e^(x + y) , show that (dy)/(dx) = (log x - 2)/((1 - log x)^2)

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

intsqrt((e^x+1)/(e^x-1))dx (A) ln (e^(x)+sqrt(e^(2x)-1))-sec^(-1)(e^(x)) +C (B) ln(e^(x)+sqrt(e^(2x)-1))+sec^(-1)(e^(x))+C (C) ln (e^(x)-sqrt(e^(2x)-1))-sec^(-1)(e^(x)) +C (D) ln(e^(x)+sqrt(e^(2x)-1))-sin^(-1)(e^(-x))+C

int((1+(log)_e x)^2)/(1+(log)_e x^(x+1)+((log)_e x^(sqrt(x)))^2)dx=

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x) = sec[log(x + sqrt(1+x^2))] is