Home
Class 11
MATHS
lim(x-gt0) (sinalphax) / (sinbetax)=alph...

`lim_(x-gt0) (sinalphax) / (sinbetax)=alpha/beta`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(sinalphax)/(sinbetax)

Prove : underset(xrarr0)"lim"(sinalphax^(@))/(sinbetax^(@))=(alpha)/(beta)

lim_(xrarr0)(sinalphax)/(e^(betax)-1)(alpha,beta!=0) equals to

lim_(x rarr0)(sin alpha x)/(tan beta x)

The value of lim_(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) - e^(beta x)) equals

The value of lim_(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) - e^(beta x)) equals

The value of lim_(x rarr0)(sin alpha x-sin beta x)/(e^(alpha x)-e^(beta x))

The value of lim_(x rarr0)(sin alpha x+sin beta x)/(e^(alpha x)-e^(beta x)) equals

underset(x rarr 0)lim (sin alpha x)/(e^(beta x) - 1) (alpha, beta != 0) equal to -