Home
Class 11
MATHS
sqrt((1+sin x)/(1-sin x))=tan((pi)/(4)+(...

sqrt((1+sin x)/(1-sin x))=tan((pi)/(4)+(x)/(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following functions with respect to x:tan^(-1){sqrt((1+sin x)/(1-sin x))},-(pi)/(2)

Differentiate the following functions with respect to x:tan^(-1){sqrt((1+sin x)/(1-sin x))},-(pi)/(2)

Prove the following: sqrt(frac(1+sin2x)(1-sin2x))=tan(pi/4+x)

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

Prove that (1- sin 2x)/(1+ sin 2x) = tan^(2) .((pi)/(4)-x)

If 0

Prove that tan^(-1)((cosx)/(1+sin x)) =(pi)/(4)-(x)/(2), x in (-(pi)/(2), (pi)/(2)) .

Prove that : cot^(-1)(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))=(x)/(2),0

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2),x(0,(pi)/(4))

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2);x in(0,(pi)/(4))