Home
Class 12
MATHS
Prove by construction of truth table tha...

Prove by construction of truth table that `p vv ~ (p ^^q)` is a tautology

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the expression \( p \lor \neg (p \land q) \) is a tautology using a truth table, we will follow these steps: ### Step 1: Set up the truth table We will create a truth table with columns for \( p \), \( q \), \( \neg p \), \( p \land q \), \( \neg (p \land q) \), and \( p \lor \neg (p \land q) \). | \( p \) | \( q \) | \( \neg p \) | \( p \land q \) | \( \neg (p \land q) \) | \( p \lor \neg (p \land q) \) | |---------|---------|---------------|------------------|-------------------------|---------------------------------| | T | T | F | T | F | T | | T | F | F | F | T | T | | F | T | T | F | T | T | | F | F | T | F | T | T | ### Step 2: Fill in the truth values 1. **Column for \( p \)**: List all combinations of truth values for \( p \) (True or False). 2. **Column for \( q \)**: List all combinations of truth values for \( q \). 3. **Column for \( \neg p \)**: This is the negation of \( p \). If \( p \) is True, \( \neg p \) is False, and vice versa. 4. **Column for \( p \land q \)**: This is True only when both \( p \) and \( q \) are True. 5. **Column for \( \neg (p \land q) \)**: This is the negation of the previous column. It is True when \( p \land q \) is False. 6. **Column for \( p \lor \neg (p \land q) \)**: This is True if either \( p \) is True or \( \neg (p \land q) \) is True. ### Step 3: Analyze the final column In the final column \( p \lor \neg (p \land q) \), we see that it is True for all combinations of truth values for \( p \) and \( q \). Since the expression evaluates to True in every possible case, we conclude that \( p \lor \neg (p \land q) \) is a tautology. ### Conclusion Thus, we have proven that \( p \lor \neg (p \land q) \) is a tautology by constructing a truth table. ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    FIITJEE|Exercise ILLUSTRATION|1 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|7 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

Prove by constructing truth table that (p ^^q) ^^ ~ (p vv q) is fallacy (contradiction)

Show that (p^^q)vv(~p)vv(p^^~q) is a tautology

Verify that the statement P vee ~( p ^^ q) is a tautology.

Without using truth table, prove that [(pvvq)^^~p]toq is a tautology.

Write down the truth table of ~ p ^^ q

Using truth table verify that ~(p vv q) -= ~p ^^ ~q

Make truth table for ~(p^q) is equal to

Given the truth table of ~ p vee q

Without using truth tables,show that p^^(q vv ~ p)-=p^^q

Using truth table prove that ~p ^^ q -=(p vv q) ^^ ~p