Home
Class 12
MATHS
Prove by constructing truth table that (...

Prove by constructing truth table that `(p ^^q) ^^ ``~ (p vv q)` is fallacy (contradiction)

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the expression \((p \land q) \land \neg (p \lor q)\) is a fallacy (contradiction), we will construct a truth table. A fallacy means that the expression evaluates to false for all possible truth values of \(p\) and \(q\). ### Step 1: Set Up the Truth Table We will create a truth table with columns for \(p\), \(q\), \(p \land q\), \(p \lor q\), \(\neg (p \lor q)\), and finally \((p \land q) \land \neg (p \lor q)\). | \(p\) | \(q\) | \(p \land q\) | \(p \lor q\) | \(\neg (p \lor q)\) | \((p \land q) \land \neg (p \lor q)\) | |-------|-------|----------------|---------------|----------------------|--------------------------------------| | T | T | T | T | F | F | | T | F | F | T | F | F | | F | T | F | T | F | F | | F | F | F | F | T | F | ### Step 2: Fill in the Truth Values 1. **Column for \(p\) and \(q\)**: We list all combinations of truth values for \(p\) and \(q\). - \(T, T\) - \(T, F\) - \(F, T\) - \(F, F\) 2. **Column for \(p \land q\)**: This column is true only if both \(p\) and \(q\) are true. - \(T \land T = T\) - \(T \land F = F\) - \(F \land T = F\) - \(F \land F = F\) 3. **Column for \(p \lor q\)**: This column is true if at least one of \(p\) or \(q\) is true. - \(T \lor T = T\) - \(T \lor F = T\) - \(F \lor T = T\) - \(F \lor F = F\) 4. **Column for \(\neg (p \lor q)\)**: This column is the negation of the previous column. - \(\neg T = F\) - \(\neg T = F\) - \(\neg T = F\) - \(\neg F = T\) 5. **Final Column for \((p \land q) \land \neg (p \lor q)\)**: This column combines the results of \(p \land q\) and \(\neg (p \lor q)\). - \(T \land F = F\) - \(F \land F = F\) - \(F \land F = F\) - \(F \land T = F\) ### Step 3: Conclusion From the last column of the truth table, we see that \((p \land q) \land \neg (p \lor q)\) is false for all combinations of truth values for \(p\) and \(q\). Therefore, we conclude that the expression is indeed a fallacy (contradiction).
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    FIITJEE|Exercise ILLUSTRATION|1 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|7 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

Prove by construction of truth table that p vv ~ (p ^^q) is a tautology

Using truth table prove that ~p ^^ q -=(p vv q) ^^ ~p

prove that (p^^q) ^^~(pvvq) is a contradiction.

Using truth table verify that ~(p vv q) -= ~p ^^ ~q

~[(p ^^ q)to(~p vv q)] is a

p vv ~(p ^^ q) is a

Using truth table ,prove that pharrq-=(p^^q)v(~p^^~q) .

Without using truth tables,show that p^^(q vv ~ p)-=p^^q

Negation of (~p ^^~ q) vv (~p vv r) is

The property ~ ( p ^^ q) -= ~ p vv ~ q is called