Home
Class 12
MATHS
The negation of statement (~p vvq) ^^ (~...

The negation of statement `(~p vvq) ^^ (~p ^^~q)` is -

A

`(p vv -q) ^^ (p vvq)`

B

`(p ^^ ~q) vv (p vvq)`

C

`(~p vv q)vv (~ p ^^ q)`

D

`(p ^^ ~ q) ^^ (p vv q)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the negation of the statement \((\neg p \lor q) \land (\neg p \land \neg q)\), we will follow these steps: ### Step 1: Identify the original statement The original statement is: \[ (\neg p \lor q) \land (\neg p \land \neg q) \] ### Step 2: Apply De Morgan's Laws To negate the entire statement, we apply De Morgan's Laws, which state that: \[ \neg(A \land B) = \neg A \lor \neg B \] and \[ \neg(A \lor B) = \neg A \land \neg B \] In our case, we have: \[ \neg((\neg p \lor q) \land (\neg p \land \neg q)) = \neg(\neg p \lor q) \lor \neg(\neg p \land \neg q) \] ### Step 3: Negate each part Now we will negate each part separately. 1. For \(\neg(\neg p \lor q)\): - Using De Morgan's Law: \[ \neg(\neg p \lor q) = \neg(\neg p) \land \neg q = p \land \neg q \] 2. For \(\neg(\neg p \land \neg q)\): - Again using De Morgan's Law: \[ \neg(\neg p \land \neg q) = \neg(\neg p) \lor \neg(\neg q) = p \lor q \] ### Step 4: Combine the results Now we combine the results from the negations: \[ \neg((\neg p \lor q) \land (\neg p \land \neg q)) = (p \land \neg q) \lor (p \lor q) \] ### Step 5: Simplify if possible The expression \((p \land \neg q) \lor (p \lor q)\) can be simplified further: \[ = p \lor (p \land \neg q) \lor q \] Using the absorption law, \(p \lor (p \land \neg q) = p\): \[ = p \lor q \] ### Final Answer Thus, the negation of the statement \((\neg p \lor q) \land (\neg p \land \neg q)\) is: \[ p \lor q \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE) (LEVEL-II)|8 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise EXERCISE 1|19 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|7 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

The negation of the statement (~pvv~q) is

The negation of the statement (~pvv~q)vv(p^^~q) is

"The negation of the statement= " (p vv q)^^ r is

Let p and q be two statements. Then, (~p vv q) ^^ (~p ^^ ~q) is a

"The negation of the statement =" [(~p^^q)vv(p^^~q)] " is "

The statement (p to ~q) hArr (p ^^q) is a-

The statement (p rArr q) iff (~p ^^ q) is a

Negation of the statement p implies (~q ^^r) is