Home
Class 12
MATHS
The nagation of statement (p ^^q) vv ( q...

The nagation of statement `(p ^^q) vv ( q vv ~r)`

A

`(p ^^q) vv (~q vv~r)`

B

`(~p ^^~q) ^^ (~q ^^r)`

C

`(~p vv -q) ^^ (-q^^r)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the negation of the statement \((p \land q) \lor (q \lor \neg r)\), we will follow these steps: ### Step 1: Identify the original statement The original statement is: \[ (p \land q) \lor (q \lor \neg r) \] ### Step 2: Apply negation to the entire statement To negate the entire statement, we write: \[ \neg((p \land q) \lor (q \lor \neg r)) \] ### Step 3: Use De Morgan's Laws According to De Morgan's Laws, the negation of a disjunction is the conjunction of the negations. Thus, we have: \[ \neg((p \land q) \lor (q \lor \neg r)) = \neg(p \land q) \land \neg(q \lor \neg r) \] ### Step 4: Negate each part Now we need to negate each part: 1. For \(\neg(p \land q)\), we apply De Morgan's Laws again: \[ \neg(p \land q) = \neg p \lor \neg q \] 2. For \(\neg(q \lor \neg r)\), we apply De Morgan's Laws: \[ \neg(q \lor \neg r) = \neg q \land r \] ### Step 5: Combine the results Now we combine the results from the negations: \[ \neg((p \land q) \lor (q \lor \neg r)) = (\neg p \lor \neg q) \land (\neg q \land r) \] ### Step 6: Simplify the expression We can simplify the expression further: \[ (\neg p \lor \neg q) \land \neg q \land r \] This can be rearranged as: \[ \neg p \lor (\neg q \land r) \] ### Final Result Thus, the negation of the statement \((p \land q) \lor (q \lor \neg r)\) is: \[ \neg p \lor (\neg q \land r) \] ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE) (LEVEL-II)|8 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise EXERCISE 1|19 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|7 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

Negation of the statement ~ p to (q vv r) is

Negation of the statement (p vv r) rArr (q vv r) is :

"The negation of the statement =" [(~p^^q)vv(p^^~q)] " is "

(p ^^ q) vv (~q ^^ p) -=

The negation of the statement (~pvv~q)vv(p^^~q) is

"The negation of the statement= " (p vv q)^^ r is

Negation of the statement (p^^r)rarr(r vv q) is-

The dual of the statement (p^^q)vv~q=pvv~q is

The dual of the statement ((p^^ q) ^^ ~q)vv (~q) is

The negative of the statement ~p vv (p ^^ q) is