Home
Class 12
MATHS
The statement (p ^^q) implies ~p is a...

The statement `(p ^^q) implies ~p` is a

A

Tautology

B

contradiction

C

Neither tautology nor contradiction

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \((p \land q) \implies \neg p\) is a tautology, contradiction, or neither, we can construct a truth table. Here’s the step-by-step solution: ### Step 1: Identify the components of the statement The statement consists of: - \(p\): a proposition that can be true (T) or false (F). - \(q\): another proposition that can also be true (T) or false (F). - \(\neg p\): the negation of \(p\). - \(p \land q\): the conjunction (AND) of \(p\) and \(q\). - \((p \land q) \implies \neg p\): the implication from \(p \land q\) to \(\neg p\). ### Step 2: Create a truth table We will create a truth table with columns for \(p\), \(q\), \(p \land q\), \(\neg p\), and \((p \land q) \implies \neg p\). | \(p\) | \(q\) | \(p \land q\) | \(\neg p\) | \((p \land q) \implies \neg p\) | |-------|-------|----------------|------------|----------------------------------| | T | T | T | F | F | | T | F | F | F | T | | F | T | F | T | T | | F | F | F | T | T | ### Step 3: Fill in the truth values 1. **For \(p = T\) and \(q = T\)**: - \(p \land q = T\) - \(\neg p = F\) - \((p \land q) \implies \neg p = F\) (since T implies F is F) 2. **For \(p = T\) and \(q = F\)**: - \(p \land q = F\) - \(\neg p = F\) - \((p \land q) \implies \neg p = T\) (since F implies anything is T) 3. **For \(p = F\) and \(q = T\)**: - \(p \land q = F\) - \(\neg p = T\) - \((p \land q) \implies \neg p = T\) 4. **For \(p = F\) and \(q = F\)**: - \(p \land q = F\) - \(\neg p = T\) - \((p \land q) \implies \neg p = T\) ### Step 4: Analyze the results Now, we look at the final column of the truth table: - The values are: F, T, T, T. Since the statement \((p \land q) \implies \neg p\) is not always true (it is false when both \(p\) and \(q\) are true), it is not a tautology. Since it is not always false (it is true in three cases), it is not a contradiction either. ### Conclusion The statement \((p \land q) \implies \neg p\) is neither a tautology nor a contradiction. **Final Answer**: Option 3: Neither tautology nor contradiction.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    FIITJEE|Exercise EXERCISE 1|19 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise EXERCISE 2|23 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|7 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

The statement p implies ~ (p ^^ ~ q) is -

The logical statement (~ q implies ~p ) vv (~ q implies p) is equivalent to :

The statement (p implies p) ^^ (~p implies p) is a-

Negation of the statement p implies (~q ^^r) is

The negation of the statement (p vv q) implies (q vvr)

Statement (p ^^ q) rarr p is

Consider two statements S_1:~p to (~q implies~p) is a tautology S_2:(~q^^p) to q is a fallacy then