Home
Class 12
MATHS
The statement (p to ~q) hArr (p ^^q) is ...

The statement `(p to ~q) hArr (p ^^q)` is a-

A

Tautology

B

contradiction

C

Neither tautology nor contradiction

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \( (p \to \neg q) \leftrightarrow (p \land q) \) is a tautology, contradiction, or neither, we can construct a truth table. Here are the steps to solve the problem: ### Step 1: Define the Variables We have two variables, \( p \) and \( q \). Each can either be true (T) or false (F). ### Step 2: Create the Truth Table We will create a truth table with columns for \( p \), \( q \), \( \neg q \), \( p \to \neg q \), \( p \land q \), and finally \( (p \to \neg q) \leftrightarrow (p \land q) \). | \( p \) | \( q \) | \( \neg q \) | \( p \to \neg q \) | \( p \land q \) | \( (p \to \neg q) \leftrightarrow (p \land q) \) | |---------|---------|---------------|---------------------|------------------|--------------------------------------------------| | T | T | F | F | T | F | | T | F | T | T | F | F | | F | T | F | T | F | F | | F | F | T | T | F | F | ### Step 3: Fill in the Truth Table 1. **Negation of \( q \)**: - If \( q \) is T, then \( \neg q \) is F. - If \( q \) is F, then \( \neg q \) is T. 2. **Implication \( p \to \neg q \)**: - This is true unless \( p \) is true and \( \neg q \) is false. - Thus: - For \( (T, T) \): \( T \to F \) is F. - For \( (T, F) \): \( T \to T \) is T. - For \( (F, T) \): \( F \to F \) is T. - For \( (F, F) \): \( F \to T \) is T. 3. **Conjunction \( p \land q \)**: - This is true only if both \( p \) and \( q \) are true. - Thus: - For \( (T, T) \): T. - For \( (T, F) \): F. - For \( (F, T) \): F. - For \( (F, F) \): F. 4. **Biconditional \( (p \to \neg q) \leftrightarrow (p \land q) \)**: - This is true if both sides are the same (both true or both false). - Thus: - For \( (T, T) \): F. - For \( (T, F) \): F. - For \( (F, T) \): F. - For \( (F, F) \): F. ### Step 4: Analyze the Result From the truth table, we see that the final column for \( (p \to \neg q) \leftrightarrow (p \land q) \) is all F (false). This means that the statement is a contradiction. ### Conclusion The statement \( (p \to \neg q) \leftrightarrow (p \land q) \) is a contradiction. ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    FIITJEE|Exercise EXERCISE 1|19 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise EXERCISE 2|23 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|7 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

The statement (p rArr q) iff (~p ^^ q) is a

The statement ~(p harr ~q) is

The statement ~(p harr ~q) is

Statement (p ^^ q) rarr p is

In the truth table for the statements ( p to q) harr(~p vvq) , the last column has the truth value in the following order

Statements (p to q) harr (~q to ~p)

The statement (p to q) to [(~p to q) to q] is