Home
Class 12
MATHS
Find the negation of qvv ~(p ^^q) to r....

Find the negation of `qvv ~(p ^^q) to r.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the negation of the statement \( q \lor \neg(p \land q) \to r \), we will follow these steps: ### Step 1: Rewrite the Implication The implication \( A \to B \) can be rewritten using logical equivalence as \( \neg A \lor B \). Thus, we can rewrite our statement as: \[ \neg(q \lor \neg(p \land q)) \lor r \] ### Step 2: Apply De Morgan's Law Next, we will apply De Morgan's Law to the negation of the disjunction: \[ \neg(q \lor \neg(p \land q)) = \neg q \land \neg(\neg(p \land q)) \] This simplifies to: \[ \neg q \land (p \land q) \] ### Step 3: Combine the Expressions Now we substitute this back into our expression: \[ (\neg q \land (p \land q)) \lor r \] ### Step 4: Negate the Entire Expression Now we need to negate the entire expression: \[ \neg((\neg q \land (p \land q)) \lor r) \] Using De Morgan's Law again, we get: \[ \neg(\neg q \land (p \land q)) \land \neg r \] ### Step 5: Apply De Morgan's Law Again Now we will apply De Morgan's Law to the first part: \[ \neg(\neg q \land (p \land q)) = \neg(\neg q) \lor \neg(p \land q) = q \lor (\neg p \lor \neg q) \] This simplifies to: \[ q \lor \neg p \lor \neg q \] ### Step 6: Combine the Results Now we combine this with the negation of \( r \): \[ (q \lor \neg p \lor \neg q) \land \neg r \] ### Final Result Thus, the negation of the original statement \( q \lor \neg(p \land q) \to r \) is: \[ (q \lor \neg p \lor \neg q) \land \neg r \] ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    FIITJEE|Exercise CHAPTER PRACTICE PROBLEMS (OBJECTIVE)|10 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE)|16 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise EXERCISE 2|23 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

The negation of qvv(p^^r) is

Find the negation of pv(-p^(q))

The negation of q vv ~ ( p ^^ r) is

The negation of p ^^ (q to ~ r) is

The negation of p vv ~ q is

The negation of (p vv ~q) ^^ q is

The negation of p ^^(q to r) is ……….

Negation of pvv(q^^~p) is