Home
Class 12
MATHS
The statement p implies ~ (p ^^ ~ q) is...

The statement ` p implies ~ (p ^^ ~ q)` is -

A

contradiction

B

a tautology

C

either (A) or (B)

D

neither (A) nor (B)

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \( p \implies \neg (p \land \neg q) \) is a contradiction, a tautology, or neither, we can use a truth table. Here’s how to solve it step by step: ### Step 1: Identify the components of the statement The statement consists of: - \( p \) - \( q \) - \( \neg q \) (negation of \( q \)) - \( p \land \neg q \) (conjunction of \( p \) and \( \neg q \)) - \( \neg (p \land \neg q) \) (negation of the conjunction) - \( p \implies \neg (p \land \neg q) \) (implication) ### Step 2: Create a truth table We will create a truth table to evaluate the statement. The truth values for \( p \) and \( q \) can be either True (T) or False (F). | \( p \) | \( q \) | \( \neg q \) | \( p \land \neg q \) | \( \neg (p \land \neg q) \) | \( p \implies \neg (p \land \neg q) \) | |---------|---------|---------------|-----------------------|------------------------------|---------------------------------------| | T | T | F | F | T | T | | T | F | T | T | F | F | | F | T | F | F | T | T | | F | F | T | F | T | T | ### Step 3: Analyze the truth table Now, we will analyze the last column of the truth table, which represents the value of the statement \( p \implies \neg (p \land \neg q) \). - The values are: T, F, T, T. ### Step 4: Determine the nature of the statement - A **tautology** is a statement that is always true (all T). - A **contradiction** is a statement that is always false (all F). - Since the statement has both true and false values, it is **neither** a tautology nor a contradiction. ### Conclusion Thus, the statement \( p \implies \neg (p \land \neg q) \) is neither a tautology nor a contradiction.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-1|24 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

Negation of the statement p implies (~q ^^r) is

The statement (p ^^q) implies ~p is a

The statement (p implies p) ^^ (~p implies p) is a-

The contrapositive of p implies (~p ^^ q) is-

The statement (p rArr q) iff (~p ^^ q) is a

The logical statement (~ q implies ~p ) vv (~ q implies p) is equivalent to :

The statement (p to ~q) hArr (p ^^q) is a-

~ (p implies q) hArr ~ p vv ~ q is-