Home
Class 12
MATHS
The false stalement in the following is-...

The false stalement in the following is-

A

`p ^^ (~p)` is a contradiction

B

`(p implies q) hArr (~ q implies ~ p)` is a contradiction

C

` ~ (~ p) hArr p` is a tautology

D

`p vv (~p)` is a tautology

Text Solution

AI Generated Solution

The correct Answer is:
To determine which statement is false among the given options, we can use a truth table. Let's denote the statements as follows: 1. \( P \) 2. \( Q \) 3. \( P \implies Q \) 4. \( \neg Q \implies \neg P \) We will analyze the truth values of these statements step by step. ### Step 1: Construct the Truth Table We will consider all possible truth values for \( P \) and \( Q \). | \( P \) | \( Q \) | \( \neg P \) | \( \neg Q \) | \( P \implies Q \) | \( \neg Q \implies \neg P \) | |---------|---------|---------------|---------------|---------------------|-------------------------------| | T | T | F | F | T | T | | T | F | F | T | F | F | | F | T | T | F | T | T | | F | F | T | T | T | T | ### Step 2: Analyze \( P \implies Q \) The implication \( P \implies Q \) is false only when \( P \) is true and \( Q \) is false. From the table, we see that this occurs in the second row. ### Step 3: Analyze \( \neg Q \implies \neg P \) The implication \( \neg Q \implies \neg P \) is false only when \( \neg Q \) is true and \( \neg P \) is false. This occurs in the second row as well. ### Step 4: Check the Bi-conditional We need to check if \( P \implies Q \) is equivalent to \( \neg Q \implies \neg P \). We will create a new column for the bi-conditional \( (P \implies Q) \leftrightarrow (\neg Q \implies \neg P) \). | \( P \) | \( Q \) | \( P \implies Q \) | \( \neg Q \implies \neg P \) | \( (P \implies Q) \leftrightarrow (\neg Q \implies \neg P) \) | |---------|---------|---------------------|-------------------------------|---------------------------------------------------------------| | T | T | T | T | T | | T | F | F | F | T | | F | T | T | T | T | | F | F | T | T | T | From the table, we can see that the bi-conditional is false in the second row, which indicates that \( P \implies Q \) is not equivalent to \( \neg Q \implies \neg P \). ### Conclusion The false statement among the options is the second one: \( P \implies Q \) is not equivalent to \( \neg Q \implies \neg P \).
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-1|24 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

Which of the following statements is false when p is true and q is false?

Which of the following statements are false ?