Show that the circle passing through the origin and cutting the circles `x^2+y^2-2a_1x-2b_1y+c_1=0` and `x^2+y^2-2a_2x -2b_2y+c_2=0` orthogonally is `|(x^2+y^2,x,y),(c_1,a_1,b_1),(c_2,a_2,b_2)|=0`
Topper's Solved these Questions
CIRCLE
FIITJEE|Exercise Solved Problems|34 Videos
CIRCLE
FIITJEE|Exercise Exercise 1|6 Videos
AREA
FIITJEE|Exercise Numerical Based|3 Videos
COMPLEX NUMBER
FIITJEE|Exercise NUMERICAL BASED|3 Videos
Similar Questions
Explore conceptually related problems
Show that the circle passing through the origin and cutting the circles x^(2)+y^(2)-2a_(1)x-2b_(1)y+c_(1)=0 and x^(2)+y^(2)-2a_(2)x-2b_(2)y+c_(2)=0 orthogonally is det[[c_(1),a_(1),b_(2)c_(1),a_(1),b_(2)c_(2),a_(2),b_(2)]]=0
Find the equation of circle passing through the origin and cutting the circles x^(2) + y^(2) -4x + 6y + 10 =0 and x^(2) + y^(2) + 12y + 6 =0 orthogonally.
Find the centre of the circle that passes through the point (1,0) and cutting the circles x^(2) + y ^(2) -2x + 4y + 1=0 and x ^(2) + y ^(2) + 6x -2y + 1=0 orthogonally is
The equation of the circle which pass through the origin and cuts orthogonally each of the circles x^(2)+y^(2)-6x+8=0 and x^(2)+y^(2)-2x-2y-7=0 is
The equation of the circle which pass through the origin and cuts orthogonally each of the circles x^(2)+y^(2)-6x+8=0 and x^(2)+y^(2)-2x-2y=7 is
The locus of the centre of the circle passing through the intersection of the circles x^(2)+y^(2)=1 and x^(2)+y^(2)-2x+y=0 is