The range of parameter `' a '`
for which the variable line `y=2x+a`
lies between the circles `x^2+y^2-2x-2y+1=0`
and `x^2+y^2-16 x-2y+61=0`
without intersecting or touching either circle is
`a in (2sqrt(5)-15 ,0)`
`a in (-oo,2sqrt(5)-15 ,)`
`a in (0,-sqrt(5)-10)`
(d) `a in (-sqrt(5)-1,oo)`
Topper's Solved these Questions
CIRCLE
FIITJEE|Exercise Solved Problems|34 Videos
CIRCLE
FIITJEE|Exercise Exercise 1|6 Videos
AREA
FIITJEE|Exercise Numerical Based|3 Videos
COMPLEX NUMBER
FIITJEE|Exercise NUMERICAL BASED|3 Videos
Similar Questions
Explore conceptually related problems
The range of parameter a' for which the variable line y=2x+a lies between the circles x^(2)+y^(2)-2x-2y+1=0 and x^(2)+y^(2)-16x-2y+61=0 without intersecting or touching either circle is a in(2sqrt(5)-15,0)a in(-oo,2sqrt(5)-15,)a in(0,-sqrt(5)-1)( d) a in(-sqrt(5)-1,oo)
The two circles x^(2)+y^(2)-5=0 and x^(2)+y^(2)-2x-4y-15=0
If the variable line 3x-4y+k=0 lies between the circles x^(2)+y^(2)-2x-2y+1=0 and x^(2)+y^(2)-16x-2y+61=0 without x^(2)+y^(2)-16x-2y+61=0 without intersecting or touching either circle,then the range of k is (a,b) where a,b in I Find the value of (b-a).
If the circles x^2+y^2-2x-2y+7=0 and x^2+y^2+4x+2y+k=0 cut orthogonally, then the length of the common chord of the circles is a.(12)/(sqrt(13)) b. 2 c. 5 d. 8
Thye angle between the lines x-2y+sqrt(15)=0& the circle x^(2)+y^(2)-4x-2y+1=0, is
A line parallel to the line x-3y=2 touches the circle x^(2)+y^(2)-4x+2y-5=0 at the point
The angle between the lines sqrt(3)x-y-2=0 and x-sqrt(3)y+1=0 is
The pole of the line x-2y+5=0 with respect to the circle x^(2)+y^(2)-4x+2y-4=0 lies on
The line lambda x+mu y=1 is a normal to the circle 2x^(2)+2y^(2)-5x+6y-1=0 if