Home
Class 12
MATHS
From any point on the circle x^(2)+y^(2)...

From any point on the circle `x^(2)+y^(2)+2gx+2fy+c=0` tangents are drawn to the circle `x^(2)+y^(2)+2gx+2fy+c sin^(2) alpha +(g^(2)+f) cos^(2) alpha=0`. The angle between the tangents is

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If from any point P on the circle x^(2)+y^(2)+2gx+2fy+c=0 tangents are drawn to the circle x^(2)+y^(2)+2gx+2fy+c sin^(2)alpha+(g^(2)+f^(2))cos^(2)alpha=0 then angle between the tangents is

If from any point P on the circle x^(2)+y^(2)+2gx+2fy+c=0, tangents are drawn to the circle x^(2)+y^(2)+2gx+2fy+c sin^(2)alpha+(g^(2)+f^(2))cos^(2)alpha=0 ,then the angle between the tangents is: (A) alpha (B) 2 alpha (C) (alpha)/(2) (D) (alpha)/(3)

If from any point P on the circle x^(2)+y^(2)+2gx+2fy+c=0, tangents are drawn to the circle x^(2)+y^(2)+2gx+2fy+c sin^(2)alpha+(g^(2)+f^(2))cos^(2)alpha=0, then find the angle between the tangents.

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

circle ax^(2)+ay^(2)+2gx+2fy+c=0 touches X -axis,if

If the circle x^(2)+y^(2)+2gx+2fy+c=0 touches y -axis then the condition is

The length of the tangent drawn from any point on the circle x^(2) + y^(2) + 2gx + 2fy + a =0 to the circle x^(2) + y^(2) + 2gx + 2fy + b = 0 is