Home
Class 12
MATHS
Equation of a circle of radius 2 and tou...

Equation of a circle of radius 2 and touching the circles `x^2+y^2-4|x|=0` is `x^2+y^2+2sqrt(3)y+2=0` `x^2+y^2+4sqrt(3)y+8=0` `x^2+y^2-4sqrt(3)y+8=0` none of these

A

`x^2+y^2+2sqrt3x-2=0`

B

`x^2+y^2-2sqrt3+2=0`

C

`x^2+y^2+2sqrt3y+2=0`

D

`x^2+y^2+2sqrt3x+2=0`

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • CIRCLE

    FIITJEE|Exercise Assignment Problems (Objective) Level -I|41 Videos
  • AREA

    FIITJEE|Exercise Numerical Based|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Equation of a circle of radius 2 and touching the circles x^(2)+y^(2)-4|x|=0 is x^(2)+y^(2)+2sqrt(3)y+2=0x^(2)+y^(2)+4sqrt(3)y+2=0x^(2)+y^(2)-4sqrt(3)y+8=0 none of these

The equation of a circle of radius 1 touching the circles x^2 + y^2 - 2 |x| = 0 is: (A) x^2 + y^2 + 2sqrt(3x) - 2 = 0 (B) x^2 + y^2 - 2sqrt(3)y+2=0 (C) x^2 + y^2 + 2sqrt(3) y + 2 = 0 (D) x^2 + y^2 + 2 sqrt(3) x + 2 = 0

The equation of a circle of radius 1touching the circles x^(2)+y^(2)-2|x|=0 is x^(2)+y^(2)+2sqrt(2)x+1=0x^(2)+y^(2)-2sqrt(3)y+2=0x^(2)+y^(2)+2sqrt(3)y+2=0x^(2)+y^(2)-2sqrt(2)+1=0

The radius of the circle 3x^(2)+3y^(2)+9x+8y-4=0 is

Equation of unit circle concentric with circle x^(2)+y^(2)+8x+4y-8=0 is

sqrt(2)x+sqrt(3)y=0sqrt(3)x-sqrt(8)y=0

The angle between the circles x^(2)+y^(2)-4x-6y-3=0 ,x^(2)+y^(2)+8x-4y+11=0