Home
Class 12
MATHS
If a(0)=x, a(n+1)=f*(a(n)), n=01,2,3,….,...

If `a_(0)=x`, `a_(n+1)=f*(a_(n))`, `n=01,2,3,….,` find `a_(n)` when
`f(x)=(1)/(1-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sequence \( a_n \) defined by the recurrence relation \( a_{n+1} = f(a_n) \) with the initial condition \( a_0 = x \) and the function \( f(x) = \frac{1}{1-x} \). ### Step-by-Step Solution: 1. **Initial Condition**: \[ a_0 = x \] 2. **First Iteration**: Using the function \( f \): \[ a_1 = f(a_0) = f(x) = \frac{1}{1-x} \] 3. **Second Iteration**: Now, we compute \( a_2 \): \[ a_2 = f(a_1) = f\left(\frac{1}{1-x}\right) \] To find \( f\left(\frac{1}{1-x}\right) \): \[ f\left(\frac{1}{1-x}\right) = \frac{1}{1 - \frac{1}{1-x}} = \frac{1}{\frac{(1-x)-1}{1-x}} = \frac{1-x}{-x} = \frac{x-1}{x} \] 4. **Third Iteration**: Now, we compute \( a_3 \): \[ a_3 = f(a_2) = f\left(\frac{x-1}{x}\right) \] To find \( f\left(\frac{x-1}{x}\right) \): \[ f\left(\frac{x-1}{x}\right) = \frac{1}{1 - \frac{x-1}{x}} = \frac{1}{\frac{x - (x-1)}{x}} = \frac{x}{1} = x \] 5. **Identifying the Pattern**: We see that: - \( a_0 = x \) - \( a_1 = \frac{1}{1-x} \) - \( a_2 = \frac{x-1}{x} \) - \( a_3 = x \) This shows that the sequence is periodic with a period of 3: \[ a_n = \begin{cases} x & \text{if } n \equiv 0 \mod 3 \\ \frac{1}{1-x} & \text{if } n \equiv 1 \mod 3 \\ \frac{x-1}{x} & \text{if } n \equiv 2 \mod 3 \end{cases} \] ### Final Result: Thus, the sequence \( a_n \) can be expressed as: \[ a_n = \begin{cases} x & \text{if } n \equiv 0 \mod 3 \\ \frac{1}{1-x} & \text{if } n \equiv 1 \mod 3 \\ \frac{x-1}{x} & \text{if } n \equiv 2 \mod 3 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Solved Problems level-I|8 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Solved Problems Level -II|8 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 3|8 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If a_(0)=x , a_(n+1)=f*(a_(n)) , n=01,2,3,…., find a_(n) when f(x)=sqrt(|x|)

If a_(0)=x,a_(n+1)=f(a_(n)), " where " n=0,1,2, …, then answer the following questions. If f(x)=(1)/(1-x), then which of the following is not true?

If a_(0)=x,a_(n+1)=f(a_(n)), " where " n=0,1,2, …, then answer the following questions. If f:R to R is given by f(x)=3+4x and a_(n)=A+Bx, then which of the following is not true?

If A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,3,....n and a_(1)

If quad 1,a_(1)=3 and a_(n)^(2)-a_(n-1)*a_(n+1)=(-1)^(n) Find a_(3).

Let nge3 be an integer. For a permutaion sigma=(a_(1),a_(2),.....,a_(n)) of (1,2,.....,n) we let f_(sigma)(x)=a_(n)X^(n-1)+a_(n-1)X^(x-2)+....+a_(2)x+a_(1) . Let S_(sigma) be the sum of the roots of f_(sigma)(x)=0 and let S denote the sum over all permutations sigma of (1,2,.....,n) of the numbers S_(sigma) . Then-

Let f(x) = a_(0)x^(n) + a_(1)x^(n-1) + a_(2) x^(n-2) + …. + a_(n-1)x + a_(n) , where a_(0), a_(1), a_(2),...., a_(n) are real numbers. If f(x) is divided by (ax - b), then the remainder is

Let a_(1),a_(2),...,a_(n) be fixed real numbers and let f(x)=(x-a_(1))(x-a_(2))(x-a_(3))...(x-a_(n)). Find lim_(xtoa_(1))f (x). If anea_(1),a_(2),..,a_(n),Compute lim_(xtoa) f(x).