Home
Class 12
MATHS
If f(x)=(x+1)/(x-1), x ne 1 , then f^(-1...

If `f(x)=(x+1)/(x-1)`, `x ne 1` , then `f^(-1)(x)` is

A

`(x+1)/(x-1)`, `x ne 1`

B

`(x+1)/(1-x)`, `x ne 1`

C

`(1)/(1+x)`, `x ne -1`

D

`(1)/(x-1)`, `x ne 1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = \frac{x+1}{x-1} \), we will follow these steps: ### Step 1: Set \( y = f(x) \) Let \( y = f(x) = \frac{x+1}{x-1} \). ### Step 2: Solve for \( x \) in terms of \( y \) We need to express \( x \) in terms of \( y \). Start by cross-multiplying: \[ y(x - 1) = x + 1 \] This simplifies to: \[ yx - y = x + 1 \] ### Step 3: Rearrange the equation Now, we rearrange the equation to isolate \( x \): \[ yx - x = y + 1 \] Factor out \( x \) from the left side: \[ x(y - 1) = y + 1 \] ### Step 4: Solve for \( x \) Now, divide both sides by \( (y - 1) \) (assuming \( y \neq 1 \)): \[ x = \frac{y + 1}{y - 1} \] ### Step 5: Write the inverse function Since we have expressed \( x \) in terms of \( y \), we can write the inverse function: \[ f^{-1}(x) = \frac{x + 1}{x - 1} \] ### Final Answer Thus, the inverse function is: \[ f^{-1}(x) = \frac{x + 1}{x - 1}, \quad x \neq 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem (SUBJECTIVE) level I|10 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem (SUBJECTIVE) level II|10 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Solved Problems level-I|8 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1-x)/(1+x) , where x ne -1, then: f^-1(x)=

If f(x)=(x+1)/(x-1), x ne 1 , find f(f(f(f(2)))))

If f(x)=(1)/(x)-1 where x ne 0, then: f(1-x)=

If f(x)=(x+1)/(x-1), x ne 1 , find f(f(f(f(f(2)))))

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)+f(-x)+2=

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)-2.f(2x)=

If f(x)= {(([x]-1)/(x-1), x ne 1),(0, x=1):} then f(x) is