Home
Class 12
MATHS
If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x, wher...

If `f(x)=cos[pi^(2)]x+cos[-pi^(2)]x`, where `[x]` stands for the greatest integer function, then

A

`f((pi)/(2))=0`

B

`f(pi)=-1`

C

`f(-pi)=1`

D

`f((pi)/(4))=(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) = \cos[\pi^2]x + \cos[-\pi^2]x \) where \([x]\) denotes the greatest integer function. ### Step-by-Step Solution: 1. **Understanding the Function**: The function is given as: \[ f(x) = \cos[\pi^2]x + \cos[-\pi^2]x \] We need to calculate the values of \( f(x) \) for specific inputs. 2. **Calculating \(\pi^2\)**: We know that \( \pi \approx 3.14 \), thus: \[ \pi^2 \approx 9.87 \] Therefore, the greatest integer function \([\pi^2]\) will give us: \[ [\pi^2] = 9 \] Similarly, since \(-\pi^2\) is approximately \(-9.87\), we have: \[ [-\pi^2] = -10 \] 3. **Substituting Values into the Function**: Now we can rewrite \( f(x) \) as: \[ f(x) = \cos(9x) + \cos(-10x) \] Using the property of cosine, \(\cos(-\theta) = \cos(\theta)\), we can simplify this to: \[ f(x) = \cos(9x) + \cos(10x) \] 4. **Evaluating \( f \) at Specific Points**: We will evaluate \( f(x) \) at the given points: \( \frac{5}{2}, \pi, -\pi, \frac{5}{4} \). - **For \( f\left(\frac{5}{2}\right) \)**: \[ f\left(\frac{5}{2}\right) = \cos\left(9 \cdot \frac{5}{2}\right) + \cos\left(10 \cdot \frac{5}{2}\right) = \cos\left(\frac{45}{2}\right) + \cos(25) \] Since \(\frac{45}{2} = 22.5\), we can find the cosine values. - **For \( f(\pi) \)**: \[ f(\pi) = \cos(9\pi) + \cos(10\pi) = -1 + 1 = 0 \] - **For \( f(-\pi) \)**: \[ f(-\pi) = \cos(-9\pi) + \cos(-10\pi) = -1 + 1 = 0 \] - **For \( f\left(\frac{5}{4}\right) \)**: \[ f\left(\frac{5}{4}\right) = \cos\left(9 \cdot \frac{5}{4}\right) + \cos\left(10 \cdot \frac{5}{4}\right) = \cos\left(\frac{45}{4}\right) + \cos\left(\frac{50}{4}\right) \] 5. **Conclusion**: After evaluating all the points, we can compare the results to the options provided in the question to determine which is correct.
Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem (SUBJECTIVE) level I|10 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem (SUBJECTIVE) level II|10 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Solved Problems level-I|8 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos[(pi)/(x)]cos((pi)/(2)(x-1)); where [x] is the greatest integer function of x, then f(x) is continuous at :

If f(x)=cos[(x^(2))/(2)]x+sin[-(x^(2))/(2)]x where [.] denotes the greatest integer function, thenwhich of the following is not correct

If f(x)=cos[(1)/(2)pi^(2)]x+sin[(1)/(2)pi^(2)]x,[x] denoting the greatest integer function,then-

If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x] denoting the greatest integer function,then

If f(x)=cos[pi]x+cos[pi x], where [y] is the greatest integer function of y then f((pi)/(2)) is equal to

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

Range of the function e^(sin(x-[x])pi) where [*] stands for the greatest integer function is

If f(x)=cos(x^(2)-4[x]) for 0ltxlt1 where [x] denotes the greatest integer function then f^(1)((sqrt(pi))/(2)) is equal to

Statement-1: The period of the function f(x)=cos[2pi]^(2)x+cos[-2pi^(2)]x+[x] is pi, [x] being greatest integer function and [x] is a fractional part of x, is pi . Statement-2: The cosine function is periodic with period 2pi