Home
Class 12
MATHS
Find the range of f(x)=|x^(2)-3x+2|...

Find the range of
`f(x)=|x^(2)-3x+2|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = |x^2 - 3x + 2| \), we will follow these steps: ### Step 1: Find the roots of the quadratic function inside the absolute value. The expression inside the absolute value is a quadratic function \( x^2 - 3x + 2 \). To find its roots, we can set it equal to zero: \[ x^2 - 3x + 2 = 0 \] Factoring the quadratic: \[ (x - 1)(x - 2) = 0 \] Thus, the roots are \( x = 1 \) and \( x = 2 \). ### Step 2: Determine the intervals for the quadratic function. The quadratic \( x^2 - 3x + 2 \) opens upwards (since the coefficient of \( x^2 \) is positive). We can analyze the sign of the quadratic in the intervals defined by the roots: 1. For \( x < 1 \): Choose \( x = 0 \): \[ f(0) = 0^2 - 3(0) + 2 = 2 \quad (\text{positive}) \] 2. For \( 1 < x < 2 \): Choose \( x = 1.5 \): \[ f(1.5) = (1.5)^2 - 3(1.5) + 2 = 2.25 - 4.5 + 2 = -0.25 \quad (\text{negative}) \] 3. For \( x > 2 \): Choose \( x = 3 \): \[ f(3) = 3^2 - 3(3) + 2 = 9 - 9 + 2 = 2 \quad (\text{positive}) \] ### Step 3: Analyze the absolute value. Now, we can rewrite \( f(x) \) based on the intervals we found: - For \( x < 1 \) and \( x > 2 \), \( f(x) = x^2 - 3x + 2 \). - For \( 1 < x < 2 \), \( f(x) = -(x^2 - 3x + 2) = -x^2 + 3x - 2 \). ### Step 4: Find the maximum and minimum values. 1. **For \( x < 1 \) and \( x > 2 \)**: - At \( x = 1 \): \[ f(1) = |1^2 - 3(1) + 2| = |0| = 0 \] - At \( x = 2 \): \[ f(2) = |2^2 - 3(2) + 2| = |0| = 0 \] As \( x \to -\infty \) or \( x \to \infty \), \( f(x) \to \infty \). 2. **For \( 1 < x < 2 \)**: - The function \( f(x) = -x^2 + 3x - 2 \) is a downward-opening parabola. To find its vertex: \[ x = -\frac{b}{2a} = -\frac{3}{2(-1)} = \frac{3}{2} \] - Evaluate \( f\left(\frac{3}{2}\right) \): \[ f\left(\frac{3}{2}\right) = -\left(\frac{3}{2}\right)^2 + 3\left(\frac{3}{2}\right) - 2 = -\frac{9}{4} + \frac{9}{2} - 2 = -\frac{9}{4} + \frac{18}{4} - \frac{8}{4} = \frac{1}{4} \] ### Step 5: Conclusion on the range. From our analysis: - The minimum value of \( f(x) \) is \( 0 \) (at \( x = 1 \) and \( x = 2 \)). - The maximum value of \( f(x) \) in the interval \( 1 < x < 2 \) is \( \frac{1}{4} \). Thus, the range of \( f(x) = |x^2 - 3x + 2| \) is: \[ \text{Range} = [0, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem (SUBJECTIVE) level II|10 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem ( OBJECTIVE )level I|20 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Solved Problems Level -II|8 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=x^(2)-x-3

Find the range of f(x)=2x^(2)-1

Find the range of f(x)=x^(2)-2|x|+3

Find the range of f(x)=x^2 +2

Find the range of f(x)=x^(2)-3x+2,0lexle4

find the range of f(x)=|x+2|-3

Find the range of (a) f(x) = x^(2) + 2x + 4 (b) f(x) = 1+x -x^(2)