Home
Class 12
MATHS
The range of f(x)=sin^(3)x in domain [-(...

The range of `f(x)=sin^(3)x` in domain `[-(pi)/(2),(pi)/(2)]` is

A

`[-1,1]`

B

`[-1,0]`

C

`[0,1]`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem ( OBJECTIVE )level II|12 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem ( OBJECTIVE )level II ( NUMERIAL BASED )|3 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem (SUBJECTIVE) level II|10 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Separate the intervals of monotonocity of the function: f(x)=-sin^(3)x+3sin^(2)x+5,x in[-(pi)/(2),(pi)/(2)]

The range of f(x)=sin^(-1)((x^(2)+1)/(x^(2)+2)) is [0,(pi)/(2)] (b) (0,(pi)/(6))( c) [(pi)/(6),(pi)/(2)](d) none of these

The range fo f(x)=sec(pi/3 cos^(2)x)

If function f(x) = (1+2x) has the domain (-(pi)/(2), (pi)/(2)) and co-domain (-oo, oo) then function is

Consider the real-valued function satisfying 2f(sin x)+f(cos x)=x .then the (a)domain of f(x) is R (b)domain of f(x)is[-1,1] (c)range of f(x) is [-(2 pi)/(3),(pi)/(3)]( d)range of f(x) is R

The range of f(x)=sin^(-1)(sqrt(x^(2)+x+1)) is (0,(pi)/(2))(b)(0,(pi)/(3))(c)((pi)/(3),(pi)/(2)) (d) [(pi)/(6),(pi)/(3)]

bb"Statement I" The range of f(x)=sin(pi/5+x)-sin(pi/5-x)-sin((2pi)/5+x)+sin((2pi)/5-x) is [-1,1]. bb"Statement II " cos""pi/5-cos""(2pi)/5=1/2

Let the function f'(x)=sin x be one- one and onto. Then a possible domain of f is O [0,2 pi] O [0,pi] O [-(pi)/(2),(pi)/(2)] O [-pi, pi]

Let f be a function defined on [-(pi)/(2), (pi)/(2)] by f(x) = 3 cos^(4) x-6 cos^(3) x - 6 cos^(2) x-3 . Then the range of f(x) is

Let f(x)=sin x+2cos^(2)x,x in[(pi)/(6),(2 pi)/(3)] then maximum value of f(x) is