Home
Class 12
MATHS
Sometimes functions are defined like f(x...

Sometimes functions are defined like `f(x)=max{sinx,cosx}`, then `f(x)` is splitted like `f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):}` etc.
If `f(x)=max{(1)/(2),sinx}`, then `f(x)=(1)/(2)` is defined when `x in `

A

`((pi)/(6),pi)`

B

`((pi)/(6),(5pi)/(6))`

C

`[(pi)/(6),(5pi)/(6)]`

D

`[0,(pi)/(6)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( f(x) = \max\left\{\frac{1}{2}, \sin x\right\} \), we need to determine the intervals where \( f(x) = \frac{1}{2} \). ### Step-by-step Solution: 1. **Understanding the Function**: The function \( f(x) \) takes the maximum value between \( \frac{1}{2} \) and \( \sin x \). This means: - If \( \sin x < \frac{1}{2} \), then \( f(x) = \frac{1}{2} \). - If \( \sin x \geq \frac{1}{2} \), then \( f(x) = \sin x \). 2. **Finding Critical Points**: We need to find the values of \( x \) for which \( \sin x = \frac{1}{2} \). - The sine function equals \( \frac{1}{2} \) at \( x = \frac{\pi}{6} \) and \( x = \frac{5\pi}{6} \) within the interval \( [0, \pi] \). 3. **Analyzing the Intervals**: - In the interval \( [0, \frac{\pi}{6}) \): - \( \sin x < \frac{1}{2} \) (since \( \sin 0 = 0 \) and \( \sin \frac{\pi}{6} = \frac{1}{2} \)). - Therefore, \( f(x) = \frac{1}{2} \). - In the interval \( \left(\frac{\pi}{6}, \frac{5\pi}{6}\right) \): - \( \sin x \) increases from \( \frac{1}{2} \) to \( 1 \) and then decreases back to \( \frac{1}{2} \). - Therefore, \( f(x) = \sin x \) for \( x \in \left(\frac{\pi}{6}, \frac{5\pi}{6}\right) \). - At \( x = \frac{5\pi}{6} \): - \( \sin x = \frac{1}{2} \), so \( f(x) = \frac{1}{2} \). - In the interval \( \left(\frac{5\pi}{6}, \pi\right) \): - \( \sin x < \frac{1}{2} \) (as \( \sin \pi = 0 \)). - Therefore, \( f(x) = \frac{1}{2} \). 4. **Conclusion**: From the analysis, we find that \( f(x) = \frac{1}{2} \) in the intervals: - \( [0, \frac{\pi}{6}] \) and \( [\frac{5\pi}{6}, \pi] \). ### Final Answer: Thus, \( f(x) = \frac{1}{2} \) is defined when \( x \in [0, \frac{\pi}{6}] \cup [\frac{5\pi}{6}, \pi] \).
Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 1|6 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 2|4 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem ( OBJECTIVE )level II ( NUMERIAL BASED )|3 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=min{tanx, cotx} then f(x)=1 when x=

If f(x)=(1-cosx)/(1-sinx)," then: "f'((pi)/(2)) is

The function f defined by f(x)=(4sinx-2x-xcosx)/(2+cosx),0lexle2pi is :

The function f defined by f(x)={{:(,(sinx^(2))/(x),x ne 0),(,0,x=0):} is

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi), is

If f(x)=2sinx-x^(2) , then in x in [0, pi]

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx