Home
Class 12
MATHS
Sometimes functions are defined like f(x...

Sometimes functions are defined like `f(x)=max{sinx,cosx}`, then `f(x)` is splitted like `f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):}` etc.
If `f(x)=min{tanx, cotx}` then `f(x)=1` when `x=`

A

`(npi)/(2)+(pi)/(4)`

B

`npi+(pi)/(6)`

C

`npi+(pi)/(4)`

D

`2npi+(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( f(x) = \min\{\tan x, \cot x\} \) and we need to find the values of \( x \) for which \( f(x) = 1 \), we can follow these steps: ### Step 1: Understand the Functions We know that: - \( \tan x = \frac{\sin x}{\cos x} \) - \( \cot x = \frac{\cos x}{\sin x} \) The function \( f(x) \) takes the minimum of these two values. ### Step 2: Set Up the Equation To find when \( f(x) = 1 \), we need to solve the equations: 1. \( \tan x = 1 \) 2. \( \cot x = 1 \) ### Step 3: Solve \( \tan x = 1 \) The equation \( \tan x = 1 \) holds true at: \[ x = \frac{\pi}{4} + n\pi \quad \text{for } n \in \mathbb{Z} \] ### Step 4: Solve \( \cot x = 1 \) The equation \( \cot x = 1 \) also holds true at: \[ x = \frac{\pi}{4} + n\pi \quad \text{for } n \in \mathbb{Z} \] ### Step 5: Combine the Results Since both equations yield the same solutions, we conclude that: \[ f(x) = 1 \text{ when } x = \frac{\pi}{4} + n\pi \quad \text{for } n \in \mathbb{Z} \] ### Final Answer Thus, the values of \( x \) for which \( f(x) = 1 \) are: \[ x = \frac{\pi}{4} + n\pi \quad \text{for } n \in \mathbb{Z} \] ---
Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 1|6 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 2|4 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem ( OBJECTIVE )level II ( NUMERIAL BASED )|3 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

The function f defined by f(x)=(4sinx-2x-xcosx)/(2+cosx),0lexle2pi is :

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi), is

Let g(x)=f(tanx)+f(cotx),AAx in ((pi)/(2),pi). If f''(x)lt0,AAx in ((pi)/(2),pi), then

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

Let f(x)= {{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):} The value of a so that f(x) is a continous at x=pi//4 is.