Home
Class 12
MATHS
Determine the range and domain of the fu...

Determine the range and domain of the function : `f(x)=(3+x^(2))/(2-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the domain and range of the function \( f(x) = \frac{3 + x^2}{2 - x} \), we will follow these steps: ### Step 1: Determine the Domain The domain of a function is the set of all possible input values (x-values) for which the function is defined. The function \( f(x) \) is undefined when the denominator is zero. 1. Set the denominator equal to zero: \[ 2 - x = 0 \] Solving for \( x \): \[ x = 2 \] 2. Therefore, the function is undefined at \( x = 2 \). The domain will be all real numbers except \( 2 \): \[ \text{Domain} = \mathbb{R} \setminus \{2\} \] ### Step 2: Determine the Range To find the range, we will express \( f(x) \) in terms of \( y \) and solve for \( x \): 1. Replace \( f(x) \) with \( y \): \[ y = \frac{3 + x^2}{2 - x} \] 2. Cross-multiply to eliminate the fraction: \[ y(2 - x) = 3 + x^2 \] Expanding this gives: \[ 2y - yx = 3 + x^2 \] 3. Rearranging the equation to form a standard quadratic equation in \( x \): \[ x^2 + yx + (3 - 2y) = 0 \] 4. For this quadratic equation to have real solutions for \( x \), the discriminant must be non-negative: \[ b^2 - 4ac \geq 0 \] Here, \( a = 1 \), \( b = y \), and \( c = 3 - 2y \): \[ y^2 - 4(1)(3 - 2y) \geq 0 \] Simplifying this: \[ y^2 - 12 + 8y \geq 0 \] Rearranging gives: \[ y^2 + 8y - 12 \geq 0 \] 5. Now, we can factor or use the quadratic formula to find the roots: \[ y = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} \] \[ y = \frac{-8 \pm \sqrt{64 + 48}}{2} \] \[ y = \frac{-8 \pm \sqrt{112}}{2} \] \[ y = \frac{-8 \pm 4\sqrt{7}}{2} \] \[ y = -4 \pm 2\sqrt{7} \] 6. The roots are: \[ y_1 = -4 - 2\sqrt{7}, \quad y_2 = -4 + 2\sqrt{7} \] 7. The quadratic \( y^2 + 8y - 12 \) opens upwards (since the coefficient of \( y^2 \) is positive). Therefore, the inequality \( y^2 + 8y - 12 \geq 0 \) holds for: \[ y \leq -4 - 2\sqrt{7} \quad \text{or} \quad y \geq -4 + 2\sqrt{7} \] ### Final Results - **Domain**: \( \mathbb{R} \setminus \{2\} \) - **Range**: \( (-\infty, -4 - 2\sqrt{7}] \cup [-4 + 2\sqrt{7}, \infty) \)
Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 3|8 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 1|6 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Determine the range and domain of the function : f(x)=(x+1)/(x^(2)+x+1)

Find the domain of the function f(x)=(x-2)/(3-x)

Range of the function f(x)=(x^(2)-2)/(2x-3) is

Write the domain and range of the function f(x)=[x]

Find the domain and range of the function f(x)=(x^(2)-9)/(x-3)

The domain of the function f(x)=(|x|-2)/(|x|-3) is

Find the domain and range of the function f(x)=(x)/(1+x^(2))

the domain of the function f(x)=log_(3+x)(x^(2)-1) is

The domain of the function f(x)=log_(3+x)(x^(2)-1) is