Home
Class 12
MATHS
Prove 1/(sqrt(|x|-x)) exists when x < 0...

Prove `1/(sqrt(|x|-x)) ` exists when x < 0

Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 2|4 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If L=lim_(x to oo) (x+1-sqrt(ax^(2)+x+3)) exists finitely then The value of L is

lim_(x rarr1)(sqrt(1-cos2(x-1)))/(x-1) a.exists and its equals sqrt(2) b.exists and its equals sqrt(-2) c.does not exist because x-1rarr0 d.L.H.L. not equal R.H.L.

If y=tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))] then prove that (dy)/(dx)=(1)/(2sqrt(1-x^(2)))

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

The set of values of x for which the function f(x)=(1)/(x)+2^(sin^(-1)x)+(1)/(sqrt(x-2)) exists is

Prove that (d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

Prove that (d)/(dx)(cos^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

Using intermediate value theorem,prove that there exists a number x such that x^(2005)+(1)/(1+sin^(2)x)=2005

Statement 1:lim_(x rarr0)(sqrt(1-cos2x))/(x) does not existe.Statement 2:f(x)=(sqrt(1-cos2x))/(x) is not defined at x=0