Home
Class 12
MATHS
The area of quadrilateral combined equat...

The area of quadrilateral combined equation of whose sides are
`(x^(2) - y^(2)) (x^(2) - y^(2) - 8x + 16) = 0` is

A

0

B

`gt` 5

C

`2 sqrt(2)`

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the quadrilateral defined by the equation \((x^2 - y^2)(x^2 - y^2 - 8x + 16) = 0\), we will follow these steps: ### Step 1: Factor the Equation The given equation can be factored into two parts: 1. \(x^2 - y^2 = 0\) 2. \(x^2 - y^2 - 8x + 16 = 0\) ### Step 2: Solve the First Equation From the first equation \(x^2 - y^2 = 0\), we can rewrite it as: \[ y^2 = x^2 \] This gives us two lines: \[ y = x \quad \text{and} \quad y = -x \] ### Step 3: Solve the Second Equation Now, let's simplify the second equation: \[ x^2 - y^2 - 8x + 16 = 0 \] Rearranging gives: \[ x^2 - 8x + 16 = y^2 \] Factoring the left side: \[ (x - 4)^2 = y^2 \] This gives us two more equations: \[ y = x - 4 \quad \text{and} \quad y = -(x - 4) \quad \text{or} \quad y = -x + 4 \] ### Step 4: Find Intersection Points Now we need to find the intersection points of these lines. 1. **Intersection of \(y = x\) and \(y = x - 4\)**: \[ x = x - 4 \implies \text{No solution} \] 2. **Intersection of \(y = x\) and \(y = -x + 4\)**: \[ x = -x + 4 \implies 2x = 4 \implies x = 2 \implies y = 2 \] So, point B is \((2, 2)\). 3. **Intersection of \(y = -x\) and \(y = x - 4\)**: \[ -x = x - 4 \implies -2x = -4 \implies x = 2 \implies y = -2 \] So, point D is \((2, -2)\). 4. **Intersection of \(y = -x\) and \(y = -x + 4\)**: \[ -x = -x + 4 \implies \text{No solution} \] 5. **Intersection of \(y = x - 4\) and \(y = -x + 4\)**: \[ x - 4 = -x + 4 \implies 2x = 8 \implies x = 4 \implies y = 0 \] So, point C is \((4, 0)\). ### Step 5: Identify the Vertices of the Quadrilateral Now we have the vertices of the quadrilateral: - Point A: \((0, 0)\) (origin) - Point B: \((2, 2)\) - Point C: \((4, 0)\) - Point D: \((2, -2)\) ### Step 6: Calculate the Area of the Quadrilateral The quadrilateral can be divided into two triangles: Triangle ABC and Triangle ACD. 1. **Area of Triangle ABC**: Using the formula for the area of a triangle given vertices \((x_1, y_1)\), \((x_2, y_2)\), \((x_3, y_3)\): \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Substituting the points: \[ \text{Area}_{ABC} = \frac{1}{2} \left| 0(2 - 0) + 2(0 - 0) + 4(0 - 2) \right| = \frac{1}{2} \left| 0 + 0 - 8 \right| = \frac{1}{2} \times 8 = 4 \] 2. **Area of Triangle ACD**: Using the same formula: \[ \text{Area}_{ACD} = \frac{1}{2} \left| 0(2 - (-2)) + 4(-2 - 0) + 2(0 - 2) \right| = \frac{1}{2} \left| 0 - 8 - 4 \right| = \frac{1}{2} \times 12 = 6 \] ### Step 7: Total Area of Quadrilateral ABCD \[ \text{Area}_{ABCD} = \text{Area}_{ABC} + \text{Area}_{ACD} = 4 + 6 = 10 \] ### Final Answer The area of the quadrilateral is \(10\) square units. ---
Promotional Banner

Topper's Solved these Questions

  • AREA

    FIITJEE|Exercise Comprehensions|9 Videos
  • AREA

    FIITJEE|Exercise Match the columns|3 Videos
  • AREA

    FIITJEE|Exercise Assignment Problems (Objective) Level - I|49 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Numerical|3 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos

Similar Questions

Explore conceptually related problems

Find the area of the triangle, the equations of whose sides are y=x, y=2x and y-3x=4.

Find the combined equation of the lines 2x + 3y = 0 and x - 2y = 0

Combined equation of pair of tangent to the hyperbola x^(2) - y^(2) = 8 " is " 8x^(2) - 7y^(2) - 16x + 8 = 0 and equation of chord of contect is x = lambda , then value of lambda is __________

Separate equations of lines, whose combined equation is 4x^(2)-y^(2)+2x+y=0 are

The area of the quadrilateral whose sides are along the lines x=0, x=4,y=-3 and y=5 is

The triangle formed by the lines whose combined equation is (y^(2)-4xy-x^(2))(x+y-1)=0 is

Orthocentre of the triangle formed by the lines whose combined equation is (y ^(2) - 6xy -x ^(2)) ( 4x -y +7) =0 is

The equation of the circumcircle of the triangle,the equation of whose sides are y=x,y=2x,y=3x+2, is

Find the equation of tangent to the conic x^(2)-y^(2)-8x+2y+11=0 at (2,1)

FIITJEE-AREA-Assignment Problems (Objective) Level - II
  1. Area bounded by curve y^(2)=x and x=4 is divided into 4 equal parts b...

    Text Solution

    |

  2. The curve y = a sqrt(x) + bx passes through the point (1,2) and the ar...

    Text Solution

    |

  3. The area bounded between the curves x^(2) = y and y^(2) = x is equal t...

    Text Solution

    |

  4. For which of the following values of m is the area of the regions boun...

    Text Solution

    |

  5. Let T be the triangle with vertices (0,0), (0,c^2 )and (c, c^2) and le...

    Text Solution

    |

  6. Let ABCD is a rectangle whose sides given area a and b. A rectangle PQ...

    Text Solution

    |

  7. Consider the function f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):} wher...

    Text Solution

    |

  8. If A(1) is the area bounded by the curve y = cos x and A(2) is the are...

    Text Solution

    |

  9. The area of the upper half of the circle whose equation (x-1)^(2)+y^(2...

    Text Solution

    |

  10. If A is the area between the curve y=sin x and x-axis in the interval...

    Text Solution

    |

  11. Area bounded by the curve f(x) ={loge|x|,|x| >= 1/e |x|-1-1/e, |x|< 1/...

    Text Solution

    |

  12. The area {(x,y) x^(2) le y le sqrt(2)} is equal to

    Text Solution

    |

  13. The slope of the tangent to a curve y=f(x) at (x,f(x)) is 2x+1. If the...

    Text Solution

    |

  14. The area bounded by the curve y y=e^|x|,y=e^(-|x|),x >= 0 and x <= 5 i...

    Text Solution

    |

  15. If the area bounded by the curve y=f(x), x-axis and the ordinates x=1 ...

    Text Solution

    |

  16. The area bounded by the curve |x|=cos^-1y and the line |x|=1 and the ...

    Text Solution

    |

  17. Area common to the curves y^2 = ax and x^2 + y^2 = 4ax is equal to

    Text Solution

    |

  18. The area of the curve x + |y| = 1 and the y-axis is

    Text Solution

    |

  19. The area of quadrilateral combined equation of whose sides are (x^(2...

    Text Solution

    |

  20. Area of the region bounded by the curve y=tanx and lines y = 0 and x =...

    Text Solution

    |