Home
Class 13
MATHS
" If "x=at^(3),y=bt^(2);" then "(d^(2)y)...

" If "x=at^(3),y=bt^(2);" then "(d^(2)y)/(dx^(2))" at "x=a" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=at^(3) ,y=bt^(2) , then find (dy)/(dx) .

If y=3at^(2);x=5bt^(4) ,find (d^(2)y)/(dx^(2)) at t=1

If x^(2)y^(3)=(x+y)^(5), then (d^(2)y)/(dx^(2)) is

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If (x)/(y)+(y)/(x)=2," then: "(d^(2)y)/(dx^(2))=

If y = 3 ^(x), then (d ^(2) y)/(dx ^(2)) =

If y=(1)/(2x^(2)+3x+1) then (d^(2)y)/(dx^(2)) at x=-2

If x^(2)+xy-y^(2)=1," then "(x-2y)^(3)(d^(2)y)/(dx^(2))=