Home
Class 12
MATHS
Differential coefficient of sec(tan^(-...

Differential coefficient of `sec(tan^(-1)x)` is (a)`x/(1+x^2)` (b) `xsqrt(1+x^2)` (c) `1/(sqrt(1+x^2))` (d) `x/(sqrt(1+x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Differential coefficient of sec(tan^(-1)x) is (x)/(1+x^(2))( b) x sqrt(1+x^(2))(c)(1)/(sqrt(1+x^(2))) (d) (x)/(sqrt(1+x^(2)))

"tan"(cos^(-1)x) is equal to x/(1+x^2) b. (sqrt(1+x^2))/x c. (sqrt(1-x^2))/x d. sqrt(1-2x)

(d)/(dx) {Tan ^(-1)"" (sqrt(1+ x ^(2))+ sqrt(1- x ^(2)))/( sqrt(1+ x ^(2))- sqrt(1- x ^(2)))}=

"tan"(cos^(-1)x) is equal to a. x/(1+x^2) b. (sqrt(1+x^2))/x c. (sqrt(1-x^2))/x d. sqrt(1-2x)

tan(cos^(-1)x) is equal to (x)/(1+x^(2)) b.(sqrt(1+x^(2)))/(x) c.(sqrt(1-x^(2)))/(x) d.sqrt(1-2x)

Differential coefficient tan^(-1)((sqrt(1-x^(2)-1))/(x)) with respect to cos^(-1)sqrt((1+sqrt(1+x^(2)))/(2sqrt(1-x^(2))))

d/dx{Tan ^(-1) (( sqrt ( 1 + x ^(2)) - sqrt (1 - x ^(2)))/( sqrt (1 + x ^(2)) + sqrt (1 - x ^(2))))} =

d/(dx){sec^(-1)""(1)/(sqrt(1-x^2))+cot^(-1)""(sqrt(1-x^2))/x} =