Home
Class 12
MATHS
" Let "a(n)=int(0)^(*)(1-sin t)^(n)sin2t...

" Let "a_(n)=int_(0)^(*)(1-sin t)^(n)sin2tdt" then "Lim_(a rarr c)sum_(u=1)^(t)(a_(n))/(n)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

a_ (n) = int_ (0) ^ ((pi) / (2)) (1-sin t) ^ (n) sin2tdt ten lim_ (n rarr oo) sum_ (n = 1) ^ (n) (a_ ( n)) / (n) is equal to

Let: a_(n)=int_(0)^((pi)/(2))(1-sin t)^(n)sin2tdt Then find the value of lim_(n rarr oo)na_(n)

lim_(n rarr0)n*sin(1/n)

If sum_(r=1)^(n)T_(r)=(n(n+1)(n+2)(n+3))/(12) then 4(lim_(x rarr oo)sum_(x-1)^(n)(1)/(T_(r))) is equal to

If A=[a_(ij)]_(n xx n,) where a_(ij)=i^(100)+j^(100) then lim_(n rarr oo)((sum_(i=1)^(n)a_(ij))/(n^(101))) equals

lim_(x rarr0)(1)/(x^(2))int_(0)^(x)(tdt)/(t^(4)+1) is equal to