Home
Class 12
MATHS
" (iii) "(e^(x)+log(e)x)/(sin3x)...

" (iii) "(e^(x)+log_(e)x)/(sin3x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when y=(e^(x)+log x)/(sin3x)

Which pair of functions is identical? (a)sin^(-1)(sinx) ,sin(sin^(-1)x) (b) log_(e)e^(x),e^(log_(e)x) (c) log_(e)x^(2),2log_(e)x (d)None of the above

Evaluate int(log_(ex)e*log_(e^(2)x)e*log_(e^(3)x)e)/(x)dx .

For all x in (0,1) (a) e^x (b) (log)_e (1+x) (c) sin x > x (d) (log)_e x > x

Evaluate: int(e^(5)(log)_(e)x-e^(4)(log)_(e)x)/(e^(3)(log)_(e)x-e^(2)(log)_(e^(x))x)dx

If f(x)=|{:(2^(-x),e^(x log_(e)2),x^(2)),(2^(-3x),e^(3x log_(e)2),x^(4)),(2^(-5x),e^(5x log_(e)2),1):}| then show that f(x) is symmetric about origin

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to