Home
Class 11
MATHS
f(x)=(e^(1/x^(2)))/(e^(1/x^(2))-1),x!=0,...

f(x)=(e^(1/x^(2)))/(e^(1/x^(2))-1),x!=0,f(0)=1" then "f" at "x=0" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

The function f(x) =(e^(1//x^(2))/(e^(1//x^(2))-1)" for "x ne 0,f(0)=1" at x =0 is"

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"

If f(x) =(e^(1)/(x^(2))+1)/(e^(1)/(x^(2))-1) (x ne 0) is continuous at x = 0 find f(0)

Let f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)+e^(-1/x)),x!=0 and f(0)=1 then-

if f(x)=e^(-(1)/(x^(2))),x!=0 and f(0)=0 then f'(0) is

Show that the function f(x) given by f(x)={((e^(1/x)-1)/(e^(1/x)+1), when x!=0), (0, when x=0):} is discontinuous at x=0 .

if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

Discuss the continulity of f(x) = (e^(1/x) -1)/(e^(1/x) + 1) , x ne 0 and f(0) = 0 at x = 0 .

If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):} , then f is