Home
Class 12
MATHS
" 1."cos2 theta*cos(theta)/(2)-cos30.cos...

" 1."cos2 theta*cos(theta)/(2)-cos30.cos(9 theta)/(2)=sin5 theta*sin(5 theta)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

cos2 theta*cos(theta/(2))-cos3 theta*cos((9theta)/2)=sin5 theta*sin((5theta)/(2))

Prove that: cos2theta.costheta/2-cos3theta.cos(9theta)/(2)=sin5theta.sin(5theta)/(2)

show that cos2 theta cos((theta)/(2))-cos3 theta cos(9(theta)/(2))=sin5 theta sin(5(theta)/(2))

Prove that: cos 2theta"cos"(theta)/(2)-cos 3theta cos((9theta)/2)="sin" 5theta "sin"((5theta)/2) .

Prove that : cos2 theta cos frac (theta)(2)- cos3 theta cos frac (9 theta)(2)= sin 5 theta sin frac (5theta)(2).

cos (2 theta) cos ((theta) / (2)) - cos (3 theta) cos ((9 theta) / (2)) = sin (5 theta) sin ((5 theta) / (2))

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

2(cos theta+cos2 theta)+(1+2cos theta)sin2 theta=2sin theta