Home
Class 11
MATHS
If |veca|=2,|vecb|=3 and |2veca-vecb|=5,...

If `|veca|=2,|vecb|=3` and `|2veca-vecb|=5`, then `|2veca+vecb|` equals: (A) 17 (B) 7 (C) 5 (D) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca|=2,|vecb|=3 and veca.vecb=4 , then |veca-vecb| is equal to

If | veca | =2, |vecb| =5 and | veca xx vecb| =8, then veca.vecb equals :

If |veca|=5|vecb|=4 and |veca+vecb|=1 then |veca-vecb|= ?

If vec|a|=3,|vecb|=4,and |veca=vecb|=5, then |veca-vecb| is equal to (A) 6 (B) 5 (C) 4 (D) 3

If vec|a|=3,|vecb|=4,and |veca+vecb|=5, then |veca-vecb| is equal to (A) 6 (B) 5 (C) 4 (D) 3

If | veca| = 2 |vecb|=5 and | veca xx vecb| = 8 , then | veca. vecb| is equal to :

If |veca|=2,|vecb|=5 and veca.vecb = 5, then angle between veca and vecb equals to ,

If |veca|=2,|vecb|=7 and veca.vecb = 7, then angle between veca and vecb equals to ,

If 2(veca.vecb)= |veca||vecb| then angle between veca and vecb equals to ,