Home
Class 10
MATHS
y^(2)*sin^(2)4+sec^(2)4+tan^(2)A sin^(2)...

y^(2)*sin^(2)4+sec^(2)4+tan^(2)A sin^(2)A=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove : (1-cos^(2)A) *sec ^(2)B + tan^(2)B (1- sin^(2)A) = sin^(2) A + tan^(2)B

tan ^ (2) A-sin ^ (2) A = sin ^ (4) A sec ^ (4) A = tan ^ (2) A sin ^ (2) A

"If "e^(sin(x^(2)+y^(2)))=tan""(y^(2))/(4)+sin^(-1)x," then y'(0) can be "

If cot A = (12)/(5) , verify tan ^(2) A - sin ^(2) A = sin ^(4) A . Sec ^(2)A .

Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A) (ii) (1)/(sec A-tan A)-(1)/(cos A)=(1)/(cos A)-(1)/(sec A + tan A)

Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A) (ii) (1)/(sec A-tan A)-(1)/(cos A)=(1)/(cos A)-(1)/(sec A + tan A)

If sin^(4)A+sin^(2)A=1, prove that: tan^(4)A-tan^(2)A=1

If sin(x+y).sec(x-y)=1 then tan^(2)x+sin^(2)x+sec^(2)x=?

If (cos^(2)x+sec^(2)x)(1+tan^(2)2y)(3+sin3z)=4 then (x,y,z)=

Prove that sec^(2)A-((sin^(2)A-2sin^(4)A)/(2cos^(4)A-cos^(2)A))=1