Home
Class 11
MATHS
Let w(Im w != 0) be a complex number. T...

Let `w(Im w != 0)` be a complex number. Then the set of all complex numbers z satisfying the equal `w-barw z = k(1-z)` , for some real number k, is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let w(Im w!=0) be a complex number.Then the set of all complex numbers z satisfying the equal w-bar(w)z=k(1-z), for some real number k,is :

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Suppose two complex numbers z=a+ib , w=c+id satisfy the equation (z+w)/(z)=(w)/(z+w) . Then

Suppose two complex numbers z=a+ib , w=c+id satisfy the equation (z+w)/(z)=(w)/(z+w) . Then

Suppose two complex numbers z=a+ib , w=c+id satisfy the equation (z+w)/(z)=(w)/(z+w) . Then