Home
Class 11
MATHS
If pth, qth, and rth terms of an A.P. ar...

If pth, qth, and rth terms of an A.P. are `a ,b ,c ,` respectively, then show that `(a-b)r+(b-c)p+(c-a)q=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If pth,qth and rth terms of an A.P.are a,b,c respectively,then show that (i) a(q-r) +b(r- p) +c(p-q)=0

If pth, qth and rth terms of an A.P. are a,b,c, respectively, then show that (i) a(q-r)+b(r-p)+c(p-q)=0 (ii) (a-b)r+(b-c)p+(c-a)q=0

If pth, qth and rth terms of an A.P. and G.P. are both a,b and c respectively, show that a^(b-c).b^(c-a).c^(a-b)=1

If the pth, qth and rth terms of an A.P. are a,b,c respectively , then the value of a(q-r) + b(r-p) + c(p-q) is :

.2 (a) If pth,qth,rth term of an A.P.are a,b,c respectively,show that (q-r)a+(r-p)b+(p-q)c=0

If p^(th),q^(th) and r^(th) terms of an A.P and G.P are both a,b and c respectively then show that a^(b-c).b^(c-a).c^(a-b)=1

If the pth, qth and rt terms of an A.P. be x,y,z respectively show that: x(q-r)+y(r-p)+z(p-q)=0

If p^(th),q^(th), and r^(th) terms of an A.P.and G.P. are both a,b and c respectively show that a^(b-c)b^(-a)c^(a-b)=1

If the p^(th), q^(th) and r^(th) terms of a H.P. are a,b,c respectively, then prove that (q - r)/(a) + (r - p)/(b) + (p - q)/(c) = 0

The pth, qth and rth terms of an A.P. are a, b and c respectively. Show that a(q – r) + b(r-p) + c(p – q) = 0