Home
Class 14
MATHS
sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))...

`sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)(1/sqrt(5)) and cos^(-1)(3/sqrt(10)) are angles in [0,(pi)/(2)] , then their sum is equal to

Show that sin^(-1)(1/sqrt(10))+cos^(-1)(2/sqrt5)=pi/4 .

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

sin{2(sin^(-1)(sqrt(5))/(3)-cos^(-1)(sqrt(5))/(3))}quad is equal to (k sqrt(5))/(81) then k=

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi