Home
Class 12
MATHS
[" 43If "cos^(-1)x+cos^(-1)y+cos^(-1)z=p...

[" 43If "cos^(-1)x+cos^(-1)y+cos^(-1)z=pi," then show that "],[x^(2)+y^(2)+z^(2)+2xyz=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1) x +cos^(-1)y +cos^(-1)z =pi , then prove that x^(2)+y^(2)+z^(2)+2xyz=1 .

If cos^(-1)x + cos^(-1)y - cos^(-1) z = 0 , then show that x^(2) + y^(2) + z^(2) - 2xyz = 1

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi , then x^(2) + y^(2) + z^(2) + 2xyz is :

If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi then x+y+z is :

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi" , prove that " x^(2) + y^(2)+ z^(2) + 2xyz = 1 .

if cos^(-1)x+cos ^(-1)y+cos^(-1) z=pi prove that x^(2) +y^(2)+z^(2) +2xyz=1

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1