Home
Class 11
MATHS
If in a triangle A B C ,cosA+2cosB+cosC=...

If in a triangle `A B C ,cosA+2cosB+cosC=2` prove that the sides of the triangle are in `AP`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC if cosA + 2cos B + cosC=2 , show that the sides of the triangle are in A.P.

In a triangle ABC cosA+cosB+cosC<=k then k=

In a triangle ABC cosA+cosB+cosC<=k then k=

If in triangle ABC cosA+cosB+cosC=3/2 then prove that triangle is equilateral

In triangle ABC, 2(bc cosA-ac cosB-ab cosC)=

In a triangle ABC, (cosB+cosC)/(1-cosA) =

In a triangle ABc, cosA+ cosB+cosC leP then P=

In DeltaABC,a/cosA=b/cosB=c/cosC,ifb=2 then the area of the triangle is

If in a Delta ABC, cosA+ cosB + cosC =3/2. Prove that DeltaABC is an equilateral triangle.