Home
Class 9
MATHS
Prove that: 2a^2+2b^2+2c^2-2a b-2b c-2c...

Prove that: `2a^2+2b^2+2c^2-2a b-2b c-2c a=[(a-b)^2+(b-c)^2+(c-a)^2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |[b, c-a^2,c] ,[a-b^2,a b-c^2,c ],[a-b^2,a ,b-c^2b c-a^2a b-c^2b c-a^2c a-b^2]|=|[a, b, c],[ b ,c ,a],[ c, a ,b]|^2 .

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that =|1 1 1 a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^3

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

If a + b + c = 0 , then prove that (2a^2)/(a^2-b^2-c^2)+(2b^2)/(b^2-c^2-a^2)+(2c^2)/(c^2-a^2-b^2)=3

Prove that b^2c^2+c^2a^2+a^2b^2> a b cxx(a+b+c)(a ,b ,c >0) .